Diet changes can partly explain the high burden of asthma in industrialised nations. Findings from experimental studies have stimulated many observational studies of the association between vitamins (A, C, D, and E) or nutrients acting as methyl donors (folate, vitamin B₁₂, and choline) and asthma. However, observational studies are susceptible to several sources of bias; well conducted randomised controlled trials (RCTs) are the gold standard to establish whether diet has an effect on asthma. Evidence from observational studies and a few RCTs strongly justifies ongoing and future RCTs in three areas: vitamin D for the prevention or treatment of asthma, choline supplementation as adjuvant treatment for asthma, and vitamin E to prevent the detrimental effects of air pollution in patients with asthma. At present, insufficient evidence exists to recommend supplementation with any vitamin or nutrient acting as a methyl donor to prevent or treat asthma.

Introduction

Asthma is a major public health problem in the USA and worldwide. Whereas the prevalence of asthma in industrialised nations has reached a relative plateau (after a sharp rise from the 1960s to the 1990s), asthma prevalence has continued to increase in many non-industrialised countries. The causes of this global asthma epidemic are largely unidentified; they are probably multifactorial and might include changes in diet—eg, decreased consumption of fruits and vegetables and increased intake of refined grains, red meats, and saturated fats. In this Review we examine evidence of a link between two groups of dietary components that have been extensively studied in connection with asthma: vitamins (A, C, D, and E) and nutrients acting as methyl donors (folate, vitamin B₁₂, and choline). In view of the fact that atopy (allergic sensitisation) is common in individuals with asthma, particularly children, we also review findings for atopy or atopic diseases (eg, atopic dermatitis) where applicable.

Vitamins with antioxidant properties and asthma

Vitamin A

Oxidative stress, resulting from an imbalance between reactive oxidant species and antioxidants, can lead to tissue damage, airway inflammation, abnormal immune responses, and increased asthma severity. Antioxidant defences include endogenous antioxidant enzymes and exogenous agents from the diet. Serum concentrations of antioxidants have been positively associated with forced expiratory volume in 1 s (FEV₁) in people with and without asthma.

Vitamin A contributes to key biological processes in human beings, including growth, vision, epithelial differentiation, reproduction, and immune responses. The two dietary sources of this vitamin are pre-formed vitamin A (retinol) and pro-vitamin A (carotenoids). Dietary intake of retinol comes from animal sources (eg, whole milk, liver, and eggs) and fortified foods. Orange-yellow fruits and vegetables (eg, carrots) are the main dietary sources of carotenoids, including α-carotene, β-carotene, and β-cryptoxanthins.

Oxidative stress might exacerbate asthma by increasing the release of pro-inflammatory cytokines, airway inflammation, and airway responsiveness. Vitamin A might improve prevention or treatment of asthma by downregulation of oxidative stress or via direct effects on the immune system. For example, vitamin A downregulates T-helper (Th)2 (pro-allergic) immune responses by increasing proliferation of T-regulatory cells and inhibiting Th17 (pro-inflammatory) cells. However, vitamin A also enhances Th2 immune responses (eg, interleukin 4 expression). Carotenoids might promote balanced Th1 or Th2 immune responses, and lycopene supplementation reduces allergic airway inflammation, decreases concentrations of circulating interleukin 4 and interleukin 5, and increases interferon-γ expression in murine models.

In 2009, Allen and colleagues undertook a systematic review and (when methodologically appropriate) a meta-analysis of 21 observational studies of dietary intake or serum concentration of vitamin A (or its components) and asthma outcomes in children and adults (not including studies of prenatal diet or prenatal antioxidant levels). Self-reported dietary intake of vitamin A or its components (retinol and carotenoids) was inversely associated with asthma (difference for comparison of cases vs controls–182 μg per day, 95% CI –288·4 to –75·3) and asthma severity (difference for comparison of severe vs mild disease –344 μg per day, 95% CI –575·2 to –112·6). However, dietary intake of vitamin A was not significantly associated with wheeze or airway responsiveness.

In 2010, Nurmatov and colleagues examined pre-natal and post-natal dietary intake or serum concentration of vitamin A for their association with asthma outcomes in children and adults, and found no significant associations with asthma, asthma symptoms, or lung function.

Key messages

- Inadequate evidence exists to recommend nutritional supplementation with any specific vitamin or methyl donor to prevent or treat asthma
- Evidence supports undertaking of randomised controlled trials for: vitamin D to prevent or treat asthma; choline as adjuvant treatment for asthma; and vitamin E to ameliorate the negative effects of air pollution on asthma

Vitamin C

Vitamin C contributes to immune function and repair processes by acting as a co-factor for the synthesis of collagen and by acting as an antioxidant. Vitamin C might decrease serum IgE levels and decrease eosinophilia in cell cultures. Evidence from observational studies and a few RCTs strongly justifies ongoing and future RCTs in three areas: vitamin D for the prevention or treatment of asthma, choline supplementation as adjuvant treatment for asthma, and vitamin E to prevent the detrimental effects of air pollution in patients with asthma. At present, insufficient evidence exists to recommend supplementation with any vitamin or nutrient acting as a methyl donor to prevent or treat asthma.

Diet changes can partly explain the high burden of asthma in industrialised nations. Findings from experimental studies have stimulated many observational studies of the association between vitamins (A, C, D, and E) or nutrients acting as methyl donors (folate, vitamin B₁₂, and choline) and asthma. However, observational studies are susceptible to several sources of bias; well conducted randomised controlled trials (RCTs) are the gold standard to establish whether diet has an effect on asthma. Evidence from observational studies and a few RCTs strongly justifies ongoing and future RCTs in three areas: vitamin D for the prevention or treatment of asthma, choline supplementation as adjuvant treatment for asthma, and vitamin E to prevent the detrimental effects of air pollution in patients with asthma. At present, insufficient evidence exists to recommend supplementation with any vitamin or nutrient acting as a methyl donor to prevent or treat asthma.
vitamin A and its components as part of a systematic review and meta-analysis of observational studies of diet or nutrients for the primary prevention of asthma and allergy in children younger than 17 years.24 For vitamin A and its components, evidence from 17 studies (including three birth cohorts) was deemed methodologically weak but possibly supportive of an effect on asthma but not on wheeze. For carotenoids, findings from two birth cohort studies showed no significant association between maternal dietary intake during pregnancy and wheeze or asthma in the child by the age of 2 years (when a confident diagnosis of asthma is not possible).23–25

Since the publication of these two systematic reviews,22,24 investigators of a longitudinal study of 17,528 Norwegian adults (aged 19–55 years) noted that daily consumption of cod liver oil (containing vitamin A [1000 µg/5 mL] and vitamin D [400 IU/5 mL]) was significantly associated with increased odds of incident asthma over a follow-up of 11 years (adjusted odds ratio [OR] 1·6, 95% CI 1·3–2·0).26 Limitations of this study include potential selection bias (about 26% of participants had missing data for cod liver oil intake), exclusion of children, and possible residual confounding by cigarette smoking or vitamin D intake.

No primary randomised controlled trial (RCT) of vitamin A for the prevention or treatment of asthma has been done. However, Checkley and colleagues27 did a secondary analysis in subgroups of Nepalese adults and children participating in two RCTs of vitamin A supplementation (administered for 16 months) to prevent mortality in children younger than 6 years, and vitamin A or β-carotene supplementation during pregnancy to prevent pregnancy-related mortality. In this analysis, neither vitamin A nor β-carotene supplementation (to preschool children [n=3879] or pregnant women [n=1551]) was significantly associated with asthma or wheeze (at adolescence or young adulthood in the first trial, and at school age in the second trial). Although the investigators had previously reported that vitamin A supplementation during pregnancy leads to increased lung function (FEV1 and forced vital capacity [FVC]) in school-aged Nepalese children,28 they recorded no significant results for FEV1 or FVC (a marker of airflow obstruction and asthma severity) in their new analysis. This study was limited by potential selection bias due to loss of follow-up (ranging from about 18% to about 40%), variability in the dose given to pre-school children, and possible confounding by additional vitamin A supplementation received as part of a nationwide programme.

Higher intake of tomatoes, carrots, and leafy vegetables (which are rich in carotenoids such as α-carotene, β-carotene, lutein, and zeaxanthin) has been associated with lower prevalence of asthma in women.29 Of the pro-vitamin A carotenoids, β-carotene has been most intensely studied because of its protective properties against the effects of free radicals and oxidative damage. A meta-analysis of five observational studies showed that high dietary intake of β-carotene was not significantly associated with asthma or FEV1.30 However, this meta-analysis was limited by sample size and residual confounding. Results of two RCTs showed that modification of dietary intake of carotenoids or lycopene through a diet rich in fruits and vegetables31 or (lycopene-rich) tomato extract and tomato juice32 improved indicators of asthma control, including lung function measures and time to disease exacerbations in adults with asthma. Larger RCTs (including both children and adults) with longer follow-up are needed to further validate these findings.

Vitamin C

Vitamin C (ascorbic acid), a potent water-soluble antioxidant found in various fruits and vegetables, has been associated with lower risks of cardiovascular disease, stroke, and cancer.33 An anti-inflammatory role for vitamin C is further supported by the finding that vitamin C supplementation reduces C-reactive protein (CRP) in individuals with raised CRP concentrations.34 Vitamin C could have beneficial effects on asthma through its immune-modulatory (eg, prostaglandin inhibition), antioxidant, or anti-inflammatory properties. In experimental models, vitamin C has been linked to decreased airway responsiveness, and reduced perivascular and peribronchiolar infiltration by inflammatory cells.35,36 In support of this hypothesis, results of a cross-sectional study of Turkish children showed reduced plasma concentrations of vitamin C (and other non-enzymatic antioxidants such as vitamin E and carotenoids) in patients with asthma.37 Similarly, an increase of 1 standard deviation in serum concentrations of vitamin C and other non-enzymatic antioxidants (eg, β-carotene and selenium) was associated with a reduction in asthma prevalence in a study of US children.38

In their systematic review and meta-analysis of 32 observational studies in children and adults, Allen and colleagues39 reported that low dietary intake of vitamin C (variably defined across studies as lowest tertile or quintile, or as a low intake level [eg, <36 or <60 mg per day]) was significantly associated with slightly increased odds of asthma (OR 1·12, 95% CI 1·04–1·20), with generally consistent results for wheeze and airway responsiveness, but null findings for asthma severity.39 Conversely, Nurmatov and colleagues40 reported methodologically weak and unsupported evidence of an effect of vitamin C on the development of asthma or atopy in their review of 14 studies (including three birth cohorts).40 The discrepant conclusions of these two meta-analyses are probably connected to major differences in the criteria for study inclusion—eg, Allen and colleagues’ study did not include birth cohorts. After publication of these reviews, investigators of a cross-sectional study of 1964 Greek children aged 1–3 years reported that dietary intake of vitamin C was significantly and inversely associated with wheeze, but not with asthma.41
In 2009, a Cochrane review of nine RCTs (aggregate sample size of 330 participants) of vitamin C supplementation and asthma outcomes (symptoms, lung function measures, total IgE, or use of inhaled steroids) concluded that insufficient evidence exists to recommend a role for vitamin C in the treatment of asthma. No primary RCT of vitamin C supplementation to prevent asthma has been done. However, investigators of a secondary analysis of an RCT of vitamin C (1000 mg) and vitamin E (400 IU RRR-α-tocopherol) supplementation to prevent pre-eclampsia in pregnant women recorded no significant effects on asthma or respiratory symptoms in the offspring of participants at age 2 years. Longer follow-up of children participating in this study could further understanding of the association between vitamin C and childhood asthma.

Vitamin E

Vitamin E comprises several fat-soluble components with distinct antioxidant properties. Vitamin E occurs naturally in eight chemical forms—α, β, γ, and δ-tocopherol, and α, β, γ, and δ-tocotrienol—of which α-tocopherol has the greatest bioavailability. Dietary sources of vitamin E include nuts, seeds, green vegetables, and vegetable oils. Vitamin E might help to prevent or treat asthma by downregulating oxidative stress, airway inflammation, and Th2-immune responses (eg, reducing production of interleukin 4 by human peripheral blood mononuclear cells). The antioxidant and anti-inflammatory properties of vitamin E are supported by findings from an unblinded trial, which showed that administration of a vitamin E isoform (d-α-tocopherol) for 16 weeks reduced F2 isoprostanes (a marker of oxidative stress) in bronchoalveolar lavage fluid and airway responsiveness to methacholine (but not to specific allergens) in adults with mild atopic asthma. Notably, plasma γ-tocopherol is inversely associated with total IgE and allergic sensitisation in adults. In their review and meta-analysis of 24 observational studies of vitamin E in children and adults, Allen and colleagues reported a significant association between low self-reported dietary intake and physician-diagnosed asthma (difference for comparison of cases and controls –1.91 mg per day, 95% CI –2.5 to –1.3 mg per day) but not with self-reported asthma, wheeze, or airway responsiveness. Lower dietary intake (but not serum concentration) of vitamin E was also significantly associated with increased asthma severity. From a review of 15 observational studies (including three birth cohorts), Nurmatov and colleagues concluded that the evidence linking vitamin E intake during pregnancy to wheeze or asthma in childhood was methodologically weak but sufficiently supportive of a potential effect, warranting follow-up in clinical trials. Pearson and colleagues showed no effect of vitamin E supplementation (500 mg per day) for 6 weeks on airway responsiveness in an RCT in 72 British adults with asthma. Consistent with this lack of effect of vitamin E on asthma morbidity, investigators of a second RCT reported that an antioxidant supplement (containing β-carotene, vitamin C, and vitamin E) had no effect on plasma F2 isoprostanes, exhaled nitric oxide, or immune responses of peripheral blood mononuclear cells in 54 adults with allergy (defined as a doctor-diagnosed allergic rhinitis or asthma, and sensitisation to at least one allergen). By contrast with these negative results, four RCTs have reported that vitamin E-containing antioxidants reduce ozone-induced bronchoconstriction in patients with asthma, which suggests a potential protective effect of vitamin E against the detrimental effects of ozone. Although no primary RCT of vitamin E supplementation to prevent asthma has been done, a secondary analysis of an RCT of vitamin C and vitamin E supplementation to prevent pre-eclampsia in pregnant women showed no effect on respiratory function in the offspring at age 2 years.

Vitamin D

Vitamin D is a nutrient and hormone that is key to the metabolism of calcium and phosphorus. Vitamin D is primarily acquired from sun exposure, with diet (eg, oily fish and dairy products) and supplements as secondary sources. Vitamin D status is assessed by measurement of the major circulating form of vitamin D—namely, serum 25-hydroxyvitamin D3 (25(OH)D). The terms vitamin D deficiency (a serum concentration of 25(OH)D <20 ng/mL) and vitamin D insufficiency (20–29 ng/mL) are commonly used, but an expert panel in the USA proposed a single threshold (≥20 ng/mL) as sufficient for musculoskeletal health. This threshold is controversial, however, because no consensus has been reached on vitamin D sufficiency for non-musculoskeletal (eg, respiratory) health. Irrespective of the threshold used, reduced serum or plasma vitamin D concentrations are commonly detected in children and adults in the USA, particularly in subgroups at high risk for asthma or asthma morbidity—eg, African Americans, Puerto Ricans, and obese people.

Although the effects (if any) of vitamin D on asthma and asthma morbidity are not fully understood, they might include regulation of gene expression or immune responses (eg, upregulation of regulatory T cells), affecting lung development or function, preventing weight gain, attenuating or preventing viral illness (a common cause of asthma exacerbations), and enhancing steroid responsiveness. Of these potential effects, the
most extensively studied are those on viral illnesses and steroid responsiveness. Findings from observational studies and RCTs suggest that vitamin D has a more consistent and stronger effect against viral respiratory illnesses in children than in adults. Results from observational and experimental studies also suggest that vitamin D insufficiency or deficiency is associated with decreased steroid responsiveness. Consistent with findings for viral illnesses, the effects of vitamin D on steroid responsiveness might be stronger in children than in adults.

In 2011, Paul and colleagues reviewed the findings of ten observational studies (including seven birth cohorts) of dietary intake or serum concentration of vitamin D and asthma, concluding that evidence for a causal link is insufficient. Since then, investigators of six observational studies (two cross-sectional and four longitudinal, including two birth cohorts) in children or adults have reported an inverse association or no association between serum or cord blood vitamin D concentration and asthma. Of the six published birth cohort studies that followed up at least 750 children each, one yielded negative results for asthma or wheeze at age 6 years, whereas five reported an inverse association between vitamin D status during pregnancy (assessed as maternal dietary intake, or maternal serum or cord blood vitamin D concentration) and wheeze or asthma between the ages of 1-3 and 5 years. All these birth cohort studies had substantial loss of follow-up (ranging from around 24% to around 53%), which could have led to selection bias.

Three population-based studies (two cross-sectional and one longitudinal) showed an association between reduced serum vitamin D concentrations and severe disease exacerbations or core measures (e.g., hospitalisations) of severe exacerbations in Costa Rican, North American, and Puerto Rican children with asthma. In the most recent of these studies, vitamin D insufficiency or deficiency (a serum 25(OH)D concentration <30 ng/mL) was associated with increased odds of one or more severe asthma exacerbations in the previous year in Puerto Rican children, even after adjustment for household income, African racial ancestry, time spent outdoors, and other covariates. Notably, this association was stronger in non-atopic children (OR 6.2, 95% CI 2.1–21.2, p<0.01) than in atopic children (2.0, 95% 1.0–4.1, p=0.04), suggesting that vitamin D affects the risk of severe asthma exacerbations through mechanisms other than regulation of allergic immune responses—e.g., modulation of viral illnesses or corticosteroid responses. Consistent with findings for severe exacerbations in children with (predominantly) mild to moderate asthma, reduced vitamin D concentrations are associated with increased airway smooth muscle mass, decreased lung function, and worse disease control in children with severe, therapy-resistant asthma.

Results of ongoing RCTs of vitamin D supplementation during pregnancy to prevent asthma in childhood (NCT00920621, NCT00856947) or (as add-on therapy) treatment failure in adulthood (NCT01248065) have not yet been published. In view of the present evidence, a clinical trial of vitamin D supplementation to prevent severe asthma exacerbations in school-aged children is both justifiable and necessary.

Nutrients acting as methyl donors

DNA methylation, a type of epigenetic regulation, is a mechanism underlying some gene–environment interactions on complex diseases such as asthma. In particular, changes in DNA methylation can affect the pathogenesis of asthma by increasing or decreasing the expression of disease-susceptibility genes.

DNA methylation is catalysed by enzymes that transfer methyl groups (methyltransferases) from the methylating agent S-adenosylmethionine to cytosine. In human beings, methyl donors for DNA methylation are mostly derived from dietary methyl groups. Folate-dependent and choline-dependent pathways interact at the point that homocysteine is converted to methionine for derivation of S-adenosylmethionine. In the first pathway, tetrahydrofolates and vitamin B12 are cofactors required by methionine synthase. In the second pathway, the methylation of homocysteine to form methionine is catalysed by betaine homocysteine methyltransferase. Both transmethylation metabolic pathways closely interconnect with methyltetrahydrofolate, B12, choline, and methionine. Methyl donors affect DNA methylation and, potentially, immune responses (figure).

Folate, a type of water-soluble vitamin B and a cofactor (as tetrahydrofolates) in the transfer of one-carbon moieties, has a key role in aminoacid metabolism, purine and pyrimidine synthesis, and formation of S-adenosylmethionine. Dark leafy vegetables, fortified cereals and bread are major dietary sources of folate. Folate deficiency is associated with neural tube defects in embryos, macrocytic anaemia, cardiovascular diseases, and cancer. Because of its known preventive effects against neural tube defects, folate supplements are routinely prescribed to women who are pregnant or planning to conceive. Vitamin B12 (cobalamin) is necessary for proper formation of red blood cells, neurological function, and DNA synthesis, and is found in meat (especially liver), poultry, fish and shellfish, eggs, milk, and milk products. Vitamin B12 deficiency is associated with neural tube defects, cardiovascular diseases, cognitive decline, macrocytic anaemia, and osteoporosis. Choline is a lipotropic agent involved in several biological functions (e.g., neurotransmitter production, signalling lipids, and components of structural membranes), and as a methyl group donor. Dietary sources of choline include meat, liver, eggs, poultry, fish and shellfish, peanuts, and cauliflower.
Choline deficiency is associated with neurological disorders, cardiovascular diseases, and inflammation.98 Nutrients acting as methyl donors could contribute to asthma risk by affecting DNA methylation and, ultimately, gene expression. In a mouse model, a maternal diet rich in methyl donors (including folic acid, vitamin B12, and choline) during pregnancy resulted in increased severity of allergic airway disease 99 in the F1 (offspring) generation and (to a lesser extent) the F2 generation. This dietary effect is probably mediated by dysregulation of lymphocyte maturation and enhancing Th2 immune responses.99 This effect, in turn, is probably caused by DNA methylation of genes that are crucial to Th1 and Th2 immune balance (eg, Runx3, which is implicated in negative regulation of allergic airway disease in mice).99 Although these findings have generated substantial interest, their relevance to human beings is unclear because of the high doses of methyl donors used in the dietary intervention and scarcity of data supporting the effects of individual methyl donors (eg, folic acid).

To our knowledge, no animal models of the effects of exclusive folate intake or exclusive vitamin B12 intake on experimental asthma (allergic airway disease) have been published. Intranasal or oral administration of choline, however, has been shown to reduce the number of eosinophils and reactive oxidant species in bronchoalveolar lavage fluid in a murine model of allergic airway disease.100 Together with findings in adults101,102 and adolescents102 with101 and without102 asthma, this suggests that choline might attenuate (and not enhance) allergic inflammation in general and airway inflammation in particular.

Results from experimental studies and the recommendation of folic acid supplementation in women who are pregnant or planning to conceive have triggered observational studies in children and adults. Because of their longitudinal design, birth cohort studies can best examine whether folate status or folic acid supplementation during pregnancy is associated with the development of asthma or atopy. However, not all birth cohort studies on this topic have gathered data for either maternal dietary intake or folate level in early pregnancy.23,103–112 Of these 11 studies, seven showed no significant association between maternal folic acid intake (through diet and supplements) and asthma;23,103,105,107,108,110,111 three of these negative studies had a short duration of follow-up,23,103,111 (limiting their assessment of asthma, which is difficult before the age of 6 years) and the rest lost a large proportion of children to follow-up. Although
the results of four birth cohort studies, showed a positive association between folate status during pregnancy and asthma or atopy, they were limited by short duration of follow-up, non-comprehensive phenotypic assessment, or inconsistent results for asthma and atopy. The authors of the largest of these positive studies (n=32 077) noted that folic acid supplementation during pregnancy was associated with slightly increased risk of wheeze (adjusted relative risk 1.06, 95% CI 1.03–1.10) and lower respiratory tract infections in infancy. Only three birth cohort studies have assessed biomarkers of folate. In two of these studies, maternal folate status during pregnancy (assessed by measurement of plasma or intracellular folic acid concentration) was not associated with childhood asthma. In the third study, maternal plasma folate concentration in the second trimester of pregnancy was significantly and linearly associated with increased odds of asthma at age 3 years. However, none of these studies has separately measured folate species (vitamers). Whether folate status affects disease severity or control in people who already have asthma is unclear.

Two cross-sectional studies in adults yielded negative findings for dietary intake or circulating concentration of vitamin B₁₂ and asthma or atopy. Additionally, investigators of two birth cohort studies reported no significant association between maternal dietary intake or circulating B₁₂ concentration during pregnancy and wheeze in young children, yielding conflicting findings for eczema or atopic dermatitis. We are not aware of published birth cohort studies of choline status during pregnancy and asthma or atopy.

No RCTs have been done on methyl donor supplementation during pregnancy to prevent asthma. This absence of research is understandable for folate because of weak and conflicting evidence from observational studies, and ethical concerns about withholding or reducing folic acid supplementation during conception or pregnancy because of its documented beneficial effects. Although no RCTs of folate or vitamin B₁₂ supplementation to treat asthma have been published, compared to 500 mg, twice per day) on indicators of disease severity or control in 76 Indian adults with asthma. In this trial, choline supplementation led to reductions in symptoms, medication use, concentrations of cytokine (interleukin 4, interleukin 5, and tumour necrosis factor α), and airway responsiveness.

Discussion

Several nutrients or vitamins with antioxidant or anti-inflammatory effects, acting additively or synergistically, could have beneficial effects on asthma. For example, whereas increased intake of fruits and vegetables decreases the risk of asthma, a so-called westernised diet—eg, rich in meats, sodium, and refined carbohydrates—increased the risk of frequent wheezing. Thus, well designed observational studies and RCTs of particular diets or dietary patterns would be justifiable and of great interest, particularly as a diet rich in fruits and vegetables and low in saturated fats or carbohydrates has known benefits to overall health. However, such a diet is not always easy to adhere to because of practical reasons, including cultural beliefs and financial limitations. Specific circumstances (such as area of residence, work habits, or fear of being outdoors because of safety concerns [eg, exposure to violence]) could limit sun exposure, which is a main determinant of circulating vitamin D concentrations. Thus, supplementation of beneficial vitamins or nutrients could be a relatively inexpensive and practical alternative for some populations with asthma or at risk of developing asthma.

All observational studies (cross-sectional and longitudinal) of vitamins or nutrients acting as methyl donors are susceptible to bias due to differential entry or retention of participants according to both the exposure and outcome of interest (selection bias), confounding by environmental or lifestyle factors (eg, socioeconomic status, physical activity, intake of other nutrients), and false-positive results due to multiple testing. Additionally, cross-sectional studies are subject to reverse causation (ie, if the disease leads to increased or decreased concentrations of a particular vitamin or nutrient) and recall bias. Furthermore, most observational studies do not have adequate statistical power to test for interactions between the vitamin or nutrient of interest and other dietary components because of the sample sizes usually used in these studies. Despite these limitations, observational studies are often helpful in deciding whether to undertake an RCT and to prioritise the need for a particular RCT. Although RCTs remain the gold standard to determine whether a vitamin or nutrient affects asthma, small or poorly conducted trials might be subject to false negatives, residual confounding (eg, if the two groups being compared are not balanced with regard to potential confounders), or bias due to differential adherence to treatment or insufficient dosing or duration of the intervention of interest.

The figure shows some of the potential mechanisms of action of methyl donors and vitamins (A, C, E, and D) on immune responses. Tables 1 and 2 summarise evidence linking vitamins or nutrients acting as methyl donors to asthma or asthma morbidity. Of the four vitamins of interest, data from observational studies support ongoing or future RCTs of vitamin D supplementation for the prevention or treatment of asthma (eg, to prevent severe disease exacerbations). Findings for vitamins A, C, and E best support a large RCT of vitamin E supplementation to ameliorate the detrimental effects of air pollution on disease morbidity in patients with asthma. For vitamins A, C, and E, additional follow-up of children in ongoing birth cohort studies could help to prioritise the need for RCTs of primary prevention.
Recommendations for fortification of foods or supplementation of folic acid to women of childbearing age were established after the peak in the asthma epidemic in industrialised countries. This fact, combined with evidence from observational studies, suggests that any effect of folate status on development of asthma is likely to be small, and should thus be assessed in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth cohort studies, preferably in the context of ongoing large birth coilu...
Published online July 31, 2013 http://dx.doi.org/10.1016/S2213-2600(13)70126-7

1 Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care
in the prevention or treatment of asthma.

11 Fitzpatrick AM, Teague WG, Holguin F, Yeh M, Brown LA. Airway
resistance mediates enhanced T reg cell growth, differentiation,
and gut homing in the face of high levels of co-stimulation.

14 Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans
retinoic acid mediates enhanced T reg cell growth, differentiation,
and gut homing in the face of high levels of co-stimulation.

15 Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria
dendritic cells promote de novo generation of Foxp3 T reg cells via

T cell differentiation mediated by retinoic acid. Science 2007;

17 Lovett-Racke AE, Racke MK. Retinoic acid promotes the
development of Th2-like human myelin basic protein-reactive

18 Chew BP, Park JS. Carotenoid action on the immune response. J Nutr

19 Hazlewood LC, Wood LG, Hansbro PM, Foster PS. Dietary lycopene
supplementation suppresses Th2 responses and lung eosinophilia in
a mouse model of allergic asthma. J Nutr Biochem 2011;
22: 95–100.

20 Lee CM, Chang HJ, Moon DO, et al. Lycopene suppresses
ovalbumin-induced airway inflammation in a murine model of

21 Allen S, Britton JR, Leonardi-Bee JA. Association between
antioxidant vitamins and asthma outcome measures: systematic

22 Nurmatov U, Devereux G, Sheikh A. Nutrients and foods for the
primary prevention of asthma and allergy: systematic review and

intake in pregnancy and wheezing illnesses in children at 2 y of

24 Martindale S, McNeill G, Devereux G, Campbell D, Russell G,
Seaton A. Antioxidant intake in pregnancy and relation to wheeze
and eczema in the first two years of life. Am J Respir Crit Care Med

25 McNeill G, Seaton A. Antioxidant intake in pregnancy in relation to
wheeze and eczema in the first two years of life. Am J Respir Crit Care Med

26 Ma CM, Chang JH, Moon DO, et al. Lycopene suppresses
ovalbumin-induced airway inflammation in a murine model of

vitamin A early in life and subsequent risk of asthma. Eur Respir J
2011; 38: 1318–19.

362: 1784–94.

29 Ramsey CD, Cledenon JC, Sreel DI, Weiss ST, Cloutier MM. Nutrients and foods for the
primary prevention of asthma and allergy: systematic review and

30 Romieu I, Varraso R, Avenel V, Leynaert B, Kauffmann F,
and eczema in childhood and asthma among children at risk for atopy. Pediatrics

31 Gao J, Gao X, Li W, Zhu Y, Thompson PJ. Observational studies on
retinoic acid mediates enhanced T reg cell growth, differentiation,
and gut homing in the face of high levels of co-stimulation.

32 Hazlewood LC, Wood LG, Hansbro PM, Foster PS. Dietary lycopene
supplementation suppresses Th2 responses and lung eosinophilia in
a mouse model of allergic asthma. J Nutr Biochem 2011;
22: 95–100.

33 Wood LG, Garg ML, Powell H, Gibson PG. Lycopene-rich
treatments modify nonsesquiphilic airway inflammation in asthma:

34 Padayatty SJ, Kate A, Wang Y, et al. Vitamin C as an antioxidant:
22: 18–35.

reduces elevated C-reactive protein. Free Radic Biol Med 2009;
46: 70–77.

vitamin C attenuated lung inflammation in mouse asthma model.

Sutherland ER, Goleta E, Jackson LP, Stevens AD, Leung DY. Vitamin D levels, lung function, and steroid response in adult asthma. Am J Respir Crit Care Med 2010; 181: 699–704.

90 Miller RL, Ho SM. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 2008; 177: S3–12.

101 Mehta AK, Singh BP, Arora N, Gaur SN. Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunology 2010; 130: 527–34.

